

European Research Council Established by the European Commission

Spatial and temporal variation of late fertility across European regions

Ingrid Setz, Marie-Caroline Compans & Éva Beaujouan

Wittgenstein Centre (IIASA, OeAW, University of Vienna)

BSPS Annual Conference 2023 Keele University, September 12

Contemporary trends

Late fertility is on the rise

 Increasing mean age at first birth & prevalence of late births at advanced reproductive ages (35+ and 40+) (e.g.: Kohler, Billari & Ortega, 2002; Beaujouan, 2020; Prioux, 2005)

Consequences that span health and socioeconomics realms

- Late mothers tend to have greater socioeconomic resources (Myrskylä et al., 2017)
- Larger health risks during pregnancy and delivery, as well as decreased fecundity (Schmidt et al., 2012; Leridon, 2004)
- Potential impact on future fertility rates (Beaujouan et al., 2023)

Measuring late fertility

Definition of late fertility

- Subjective and embedded in the fertility levels and norms prevailing across time and space (Beaujouan, 2020)
- Diverse age benchmarks for late fertility, including ages 35+, 40+, and 45+ (Kohler, Billari & Ortega, 2002; Prioux; Beaujouan & Sobotka 2022)

Late fertility versus postponement

- Factors affecting late fertility include fertility postponement *and* recuperation
 - Postponing fertility doesn't necessarily result in a *full* recuperation and an increase in late fertility rates (Compans, 2021)

Late fertility is on the rise

Share of fertility rates at ages 40+ in total fertility (in %)

Source: Beaujouan & Sobotka (2022)

Heterogeneity between countries

8 1985 2018 7 **EU** average 6 4.6% in 2018 5 4 3 **Vast differences** 2 *between* countries 1 0 Switzenand Netterlands Clechia Bulgaria Belgium Romania Hungary Dennatt Nonver Austria Half inland Spain reland a trance creece cheder () te

Share of fertility rates at ages 40+ in total fertility (in %)

Source: Beaujouan & Sobotka (2022)

Heterogeneity *within* **countries**

Evidence so far

- Spatial variation
 - Urban areas exhibit higher prevalence of late fertility (Riederer & Beaujouan, 2023; Buelens, 2021; Campisi et al., 2022; Šprocha & Fitalov, 2022)
- Temporal variation (Europe wide)
 - MAB increased universally, but at different paces (Buelens, 2021)
- Contextual factors explain diverse prevalence within countries
 - Studies emphasize economic (Riederer & Beaujouan, 2023; Šprocha & Fitalov, 2022) and social context (Campisi et al., 2022)

→ Europewide analysis of the temporal and spatial variation of late fertility is missing
→ Have contextual factors driven the *change* in late fertility over time?

Research aims

- 1. How has late fertility spread across European regions from 2002 to 2018?
- 2. What drives late fertility shifts across regions?

Estimating the extent to which shifts in late fertility are a result of

- Socioeconomic adaptation Focus on established contextual factors that explain differentials in late fertility (e.g., Riederer & Beaujouan, 2023)
- Geographic diffusion Focus on spread across regions: spatial dependence (studies on low fertility patterns: e.g., Vitali & Billari, 2015; Wu et. al, 2022)

→ Unprecedent analysis of late fertility with broader temporal and geographic scope

→ Contributing to the growing literature that considers space in fertility research (e.g., Campisi et. al, 2022; Goldstein & Klüsener, 2014; Vitali & Billari, 2015)

Data & measures

Eurostat & ESPON data

- Geographic scope 215 NUTS 2 regions across 24 European countries
- Temporal scope 2002/05-2018

Dependent variable

 $LateFertility_{region,time} = \frac{ASFR35 + region,time}{TFR_{region,time}} * 100$

Independent variables

GDP in PPS, % women with tertiary education, % women in employment, population density, crude rate of net migration

Econometric framework

We account for the *high degree of spatial autocorrelation* (positive and significant) in late fertility prevalence within spatial models:

1. latefertility = $\lambda (I_T \otimes W)$ latefertility + $X\beta$ + δ + u

2. g latefertility = $\lambda W g$ latefertility + g X β + u

λ spatial autoregressive parameter

X matrix of regressors: GDP, % women with tertiary education, % women in employment, population density, net migration

 I_T identity matrix \otimes Kronecker product W weights matrix δ random effects

$$g = (z^1 - z^0) / z^0 * 100$$

Spatial variation of late fertility

Heterogeneity between countries

Share of fertility rates at ages 35+ in total fertility (in %), 2018

Spatial variation of late fertility

Heterogeneity within countries

Share of fertility rates at ages 35+ in total fertility (in %), 2018

Temporal variation of late fertility

Heterogeneity over time

Share of fertility rates at ages 35+ in total fertility (in %), absolute change (in ppt), 2002-2018 2002-2018

Spatial and temporal variation of late fertility

Absolute change (in ppt) 2002-2018

> Min + 3.0 ppt Mean +8.9 ppt Max + 15.7 ppt

Country mean
Country capital region

Absolut change in fertility rates at ages 35+ in total fertility (in %) between 2002 and 2018

ML panel with spatial lag, random effects

Dep. variable: Share of fertility rates at ages 35+ in total fertility

GDP	0.654***	
GDP ²	0.139***	
% women with higher education	0.620***	
% women in employment	0.119	Contextual factors explain
Population density	1.059***	late fertility prevalence
Net migration	-0.080***	
λ	0.802***	Spatial dependence as well

Note: ***Significant at the 0.1% level, ** 1% level, * 5% level, . at the 10% level.

ML with spatial lag

Dep. variable: Growth in share of fertility rates at ages 35+ in total fertility

g GDP	2.089 *	
g women with higher education	2.386**	Contextual factors drive late fertility prevalence
g women in employment	-0.622	
g population density	-1.708*	
g net migration	-0.782	
λ	0.669***	Diffusion as well

Note: ***Significant at the 0.1% level, ** 1% level, * 5% level, . at the 10% level.

Limitations

1. Measures

Period fertility with all parities together

→ Late fertility today: delaying 1st and 2nd births (Beaujouan & Sobotka, 2019)

Spatial dependence as proxy for diffusion

→ Similar work on low fertility patterns (Vitali & Billari, 2015; Wu et. al, 2022)

2. Modifiable areal unit problem (MAUP)

- → NUTS 2 less susceptible to MAUP than NUTS 3 (ESPON, 2006:134)
- > No major discrepancies between units in 2018 (Riederer & Beaujouan, 2023)

Summary

- Vast spatial *and* temporal variation of late fertility across regions between 2002-2018
- Socioeconomic adaption versus geographic diffusion?
 - *Both* are relevant in explaining regional shifts in late fertility
- Next steps
 - Analysis of further contextual factors
 - Enlargement of sample

Contact ingrid.setz@oeaw.ac.at

References I

- Beaujouan, É., & Sobotka, T. (2022). Is 40 the New 30? Increasing Reproductive Intentions and Fertility Rates beyond Age 40. In D. S. Nikolaou & D. B. Seifer (Eds.), Optimizing the Management of Fertility in Women over 40 (1st ed., pp. 3–13). *Cambridge University Press.* doi: 10.1017/9781009025270.002
- Beaujouan, É., & Sobotka, T. (2019). Late Childbearing Continues to Increase in Developed Countries. Population & Societies (562):4.
- Beaujouan, É., Zeman, K., & Nathan, M. (2023). Delayed first births and completed fertility across the 1940–1969 birth cohorts. *Demographic Research*, 48(15), 387–420. doi: 10.4054/DemRes.2023.48.15
- Beaujouan, É. (2020). Latest-Late Fertility? Decline and Resurgence of Late Parenthood Across the Low-Fertility Countries. *Population and Development Review* 46(2):219–47. doi: 10.1111/padr.12334.
- Buelens, M. (2021). Subnational Spatial Variations of Fertility Timing in Europe since 1990. Cybergeo: *European Journal of Geography*. doi: 10.4000/cybergeo.37887.
- Campisi, N., Kulu, H., Mikolai, Ju., Klüsener, S., & Myrskylä, M. (2022). A Spatial Perspective on the Unexpected Nordic Fertility Decline: The Relevance of Economic and Social Contexts. *Applied Spatial Analysis and Policy*. doi: 10.1007/s12061-022-09467-x.
- Compans, M.-C. (2021). Late motherhood, late fatherhood, and permanent childlessness: Trends by educational level and cohorts (1950–1970) in France. Demographic Research, 45(10), 329–344. doi: 10.4054/DemRes.2021.45.10
- European Spatial Planning Observation Network (ESPON). (2006). The modifiable areas unit problem (Final Report ISBN number: 978-2-7442-0134-9; ESPON Scientific Support Project 3.4.3).
- Goldstein, J. R., & Klüsener, S. (2014). Spatial Analysis of the Causes of Fertility Decline in Prussia. *Population and Development Review*, 40(3), 497–525. doi: 10.1111/j.1728-4457.2014.00695.x

BIC.LATE receives funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant Agreement No 101001410).

References II

- Kohler, H.-P., Billari, F. C., & Ortega, J. A. (2002). The emergence of lowest-low fertility in Europe during the 1990s. *Population and Development Review*, 28(4), 641–680. doi: 10.1111/j.1728-4457.2002.00641.x
- Leridon, H. (2004). Can assisted reproduction technology compensate for the natural decline in fertility with age? A model assessment. *Human Reproduction*, 19(7), 1548–1553. doi: 10.1093/humrep/deh304
- Myrskylä, M., Barclay, K., & Goisis, A. (2017). Advantages of later motherhood. *Der Gynäkologe*, 50(10), 767–772. doi: 10.1007/s00129-017-4124-1
- Prioux, F. (2005). Late Fertility in Europe: Some Comparative and Historical Data. *Revue d'Épidémiologie et de Santé Publique* 53(2):1–9. doi: 10.1016/S0398-7620(05)84763-7.
- Riederer, B., & Beaujouan, É. (2022). Urban-Rural Differences in Later Fertility in Europe: Patterns and Determinants. In Review.
- Schmidt, L., Sobotka, T., Bentzen, J. G., & Nyboe Andersen, A. (2012). Demographic and medical consequences of the postponement of parenthood. *Human Reproduction*, 18(1), 29–43. doi: 10.1093/humupd/dmr040
- Šprocha, B., & Fitalová, A. (2022). Late Motherhood and Spatial Aspects of Late Fertility in Slovakia. *Moravian Geographical Reports* 30(2):86–98. doi: 10.2478/mgr-2022-0006.
- Vitali, A., & Billari, F. (2017). Changing Determinants of Low Fertility and Diffusion: A Spatial Analysis for Italy. *Population, Space and Place* 23:e1998. doi: 10.1002/psp.1998.
- Wu, X., Yu, D., Zhang, Y., Li, D., & Wang, X. (2022). Low fertility spread in China: A blended adaptation and diffusion explanation. *Population, Space and Place* 28:e2555. doi: 10.1002/psp.2555.

BIC.LATE receives funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant Agreement No 101001410).